Course: Deep Learning and Computer Vision

Time duration	Theory Topics	Hands on
Week 1	 Basics required for Machine Learning (ML), Deep Learning (DL). Introduction to ML, DL, Image Processing (IP), Computer Vision (CV). Types of Learning ML Vs DL 	 Introduction to python. Python for image processing Introduction to TensorFlow, GoogleColab, Keras and Pytorch Important libraries
Week 2	 Popular traditional ML algorithms. Components of ML/DL Algorithms Introduction to deep neural network Neural network working and applications 	 Implementation of ANN for classification, prediction, and regression using python
Week 3	 Introduction to auto-encoder and its applications. Introduction of CNN and variants (SoTA models). Solving problems using CNN Transfer Learning 	 Implementing CNN for classification, regression, prediction. SoTA Models Implementation of auto- encoder for dimension reduction and denoising. Use of transfer learning.
Week 4	 Introduction to generative models (Variational Auto-encoder, Generative Adversarial Networks, and their variants). Applications of generative models (Image synthesis, Data Augmentation, Anomaly Detection) 	 Implementations of generative models for Image synthesis, Data Augmentation, Anomaly Detection.
Week 5	 Introduction to RNN, LSTM and Transformers. Future trends in AI, ML and DL (Quantum Computing, Explainable AI, Edge AI etc.) Case study of an AI application. 	 Implementation of RNNs, LSTM and transformers. Solving real life problem examples using DL
Week 6	Mini Proje	ect